Filters
Question type

Evaluate the integral. - 14x1/2dx\int_{1}^{4} x^{1 / 2} d x


A) 2.8
B) 4.67
C) 3.4
D) 5.67

E) None of the above
F) A) and D)

Correct Answer

verifed

verified

Find the area of the shaded region. - Find the area of the shaded region. -   A)   \frac{29}{3}  B)   \frac{38}{3}  C)   \frac{22}{3}  D)   \frac{16}{3}


A) 293\frac{29}{3}
B) 383\frac{38}{3}
C) 223\frac{22}{3}
D) 163\frac{16}{3}

E) B) and D)
F) B) and C)

Correct Answer

verifed

verified

Find the area bounded by the given curves. - y=5xy=\frac{5}{x} and y=1+5xx2;[1,5]y=1+5 x-x^{2} ;[1,5]


A) 14.619
B) 2.569
C) 46.379
D) 9.730

E) C) and D)
F) B) and C)

Correct Answer

verifed

verified

Find the integral. - x45x5+3dx\int \frac{x^{4}}{5 x^{5}+3} d x


A) 15ln5x5+3+C\frac{1}{5} \ln \left|5 x^{5}+3\right|+C
B) 25ln(5x5+3) +C25 \ln \left(5 x^{5}+3\right) +C
C) 125ln5x5+3+C\frac{1}{25} \ln \left|5 x^{5}+3\right|+C
D) 25ln5x5+3+C25 \ln \left|5 x^{5}+3\right|+C

E) B) and C)
F) C) and D)

Correct Answer

verifed

verified

Find the area bounded by the given curves. - y=2xx2,y=2x4y=2 x-x^{2}, y=2 x-4


A) 343\frac{34}{3}
B) 373\frac{37}{3}
C) 323\frac{32}{3}
D) 313\frac{31}{3}

E) A) and C)
F) None of the above

Correct Answer

verifed

verified

Find the integral. - 3(2t+5) 3dt\int 3(2 t+5) ^{3} d t


A) 14(2t+5) 4+C\frac{1}{4}(2 t+5) ^{4}+C
B) 38(2t+5) 4+C\frac{3}{8}(2 t+5) ^{4}+C
C) 12(2t+5) 4+C\frac{1}{2}(2 t+5) ^{4}+C
D) 34(2t+5) 4+C\frac{3}{4}(2 t+5) ^{4}+C

E) All of the above
F) B) and D)

Correct Answer

verifed

verified

Find the integral. - 7pe(5p2) dp\int 7 p e^{\left(5 p^{2}\right) } d p


A) 7e(5p2) +C7 e^{\left(5 p^{2}\right) }+C
B) 7e(5p2) +C-7 e^{\left(5 p^{2}\right) }+C
C) 710e(5p2) +C\frac{7}{10} e^{\left(5 p^{2}\right) }+C
D) 75e(5p2) +C-\frac{7}{5} e^{\left(5 p^{2}\right) }+C

E) A) and B)
F) A) and C)

Correct Answer

verifed

verified

Use integration by parts to find the integral. - ln6xx3dx\int \frac{\ln 6 x}{x^{3}} d x


A) 12x2ln6x14x2+C-\frac{1}{2} x^{-2} \ln 6 x-\frac{1}{4} x^{-2}+C
B) ln6x+12x2+C\ln 6 x+\frac{1}{2} x^{-2}+C
C) 12x2ln6x12x1+C-\frac{1}{2} x^{-2} \ln 6 x-\frac{1}{2} x^{-1}+C
D) 12x2ln6x+14x2+C-\frac{1}{2} x^{-2} \ln 6 x+\frac{1}{4} x^{-2}+C

E) None of the above
F) All of the above

Correct Answer

verifed

verified

Find the integral. - 6x7dx\int \sqrt{6 x-7} d x


A) 12(6x7) 3/2+C\frac{1}{2}(6 x-7) ^{3 / 2}+C
B) 19(6x7) 3/2+C\frac{1}{9}(6 x-7) ^{3 / 2}+C
C) 13(6x7) 3/2+C\frac{1}{3}(6 x-7) ^{3 / 2}+C
D) 16(6x7) 3/2+C\frac{1}{6}(6 x-7) ^{3 / 2}+C

E) B) and C)
F) C) and D)

Correct Answer

verifed

verified

Evaluate the definite integral. - 04et(10+et) 3dt\int_{0}^{4} \frac{\mathrm{e}^{\mathrm{t}}}{\left(10+\mathrm{e}^{\mathrm{t}}\right) ^{3}} d t


A) 0.0160
B) -0.0024
C) -0.0080
D) 0.0040

E) C) and D)
F) A) and B)

Correct Answer

verifed

verified

Use integration by parts to find the integral. - 3xexdx\int 3 x e^{x} d x


A) 3xex3ex+C3 x e^{x}-3 e^{x}+C
B) 3exex+C3 e^{x}-e^{x}+C
C) 3ex3xex+C3 e^{x}-3 x e^{x}+C
D) xex3ex+Cx e^{x}-3 e^{x}+C

E) None of the above
F) A) and C)

Correct Answer

verifed

verified

Find the given indefinite integral. - ln(7x+8) dx\int \ln (7 x+8) d x


A) 1756xln(7x+8) (7x+8) ]+C\left.\frac{1}{7} 56 x-\ln (7 x+8) -(7 x+8) \right]+C
B) 17[(7x+8) lnx(7x+8) ]+C\frac{1}{7}[(7 x+8) \ln x-(7 x+8) ]+C
C) 17[(7x+8) ln(7x+8) (7x+8) ]+C\frac{1}{7}[(7 x+8) \ln (7 x+8) -(7 x+8) ]+C
D) 17[(7x+8) ln(7x+8) (7x+8) 56]+C\frac{1}{7}[(7 x+8) \ln (7 x+8) -(7 x+8) -56]+C

E) B) and C)
F) A) and B)

Correct Answer

verifed

verified

Solve the problem. -The work WW (in joules) done by a force FF (in newtons) moving an object through a distance xx (in meters) is given by W=Fdx\mathrm{W}=\int \mathrm{Fdx} . Find a formula for W\mathrm{W} , if F=kx\mathrm{F}=\mathrm{kx} and k\mathrm{k} is a constant.


A) W=kx2+CW=\frac{k x}{2}+C
B) W=kx22+C\mathrm{W}=\frac{k x^{2}}{2}+C
C) W=kxx2+C\mathrm{W}=\mathrm{kx} \mathrm{x}^{2}+\mathrm{C}
D) W=k+C\mathrm{W}=\mathrm{k}+\mathrm{C}

E) A) and B)
F) A) and C)

Correct Answer

verifed

verified

Find the integral. - dx(5+lnx) x\int \frac{d x}{(5+\ln x) x}


A) ln5+lnx+C\ln |5+\ln x|+C
B) ln(5+lnx) +C\ln (5+\ln x) +C
C) 5ln5+lnx+C5 \ln |5+\ln x|+C
D) 15ln5+lnx+C\frac{1}{5} \ln |5+\ln x|+C

E) A) and B)
F) A) and C)

Correct Answer

verifed

verified

Work the exercise. -Find the total revenue function R(x) R(x) (in thousands of dollars) if the marginal revenue (in thousands of dollars per unit) at a production level of xx units is R=49x+3ex(0x7) R^{\prime}=\frac{49 x+3}{e^{x}}(0 \leq x \leq 7) , and R(0) =0R(0) =0 .


A) R(x) =49xex10ex52R(x) =49 x e^{-x}-10 e^{-x}-52
B) R(x) =49xex+52ex49R(x) =49 x e^{-x}+52 e^{-x}-49
C) R(x) =49xex+52ex+49R(x) =-49 x e^{-x}+52 e^{-x}+49
D) R(x) =49xex52ex+52R(x) =-49 x e^{-x}-52 e^{-x}+52

E) None of the above
F) A) and B)

Correct Answer

verifed

verified

Find the integral. - x5+1xdx\int \frac{x^{5}+1}{x} d x


A) 13x4lnx+C\frac{1}{3} x^{4}-\ln |x|+C
B) 15x5+lnx+C\frac{1}{5} x^{5}+\ln |x|+C
C) 15x5lnx+C\frac{1}{5} x^{5}-\ln |x|+C
D) 13x4+lnx+C\frac{1}{3} x^{4}+\ln |x|+C

E) All of the above
F) C) and D)

Correct Answer

verifed

verified

Provide an appropriate response. -If we use u=x2u=x^{2} as a substitution to find xex2dxx e^{x^{2}} d x , then which of the following would be the correct results? i. (eu2) du\int\left(\frac{e^{u}}{2}\right) d u \quad ii) (2eu) du\int\left(2 e^{u}\right) d u \quad iii) (ueu) du\int\left(u e^{u}\right) d u


A) i is correct.
B) iii is correct.
C) ii is correct.
D) None of these is correct.

E) A) and D)
F) A) and B)

Correct Answer

verifed

verified

Find the particular solution of the differential equation. - dydx=4x;y=13\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{4}{\mathrm{x}} ; \mathrm{y}=13 when x=1\mathrm{x}=1


A) y=4lnx+2y=4 \ln x+2
B) y=lnx+13y=\ln x+13
C) y=lnx+11y=\ln x+11
D) y=4lnx+13y=4 \ln x+13

E) A) and C)
F) All of the above

Correct Answer

verifed

verified

Find the integral. - (x6+6x) dx\int\left(\frac{x}{6}+\frac{6}{x}\right) d x


A) 112x2+6lnx+C\frac{1}{12} x^{2}+6 \ln |x|+C
B) 16x+C\frac{1}{6} x+C
C) x+Cx+C
D) xln6+6lnx+Cx \ln 6+6 \ln |x|+C

E) None of the above
F) All of the above

Correct Answer

verifed

verified

Find the particular solution of the differential equation. - 2dydx4xy=8x;y=82 \frac{d y}{d x}-4 x y=8 x ; y=8 when x=0x=0


A) y=2+10ex2y=-2+10 e^{-x^{2}}
B) y=1+9ex2y=-1+9 e^{x^{2}}
C) y=2+8ex2y=2+8 e^{x^{2}}
D) y=2+10ex2y=-2+10 e^{x^{2}}

E) A) and D)
F) C) and D)

Correct Answer

verifed

verified

Showing 81 - 100 of 227

Related Exams

Show Answer